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LElTER TO THE EDITOR 

Geometric phase, geometric distance and length of the curve in 
quantum evolution 

Arun Kumar Pati 
Theoretical Physics Division, 5th Floor, Central Complex, Bhabha Atomic Research Centre, 
Bombay 400005, India 

Received 19 May 1992 

Abstract. The geometric phase and the geometric distance function are intimately related 
via length of the curve (a concept we introduce) for any parametric evolution of the 
quantum system. We offer an interpretation ofthe non-adiabatic Berry phase as the integral 
over a difference between the differentials of two geometric quantities, which enables us 
to say that the geometric phase is just (half) the integral of the contracted length of the 
cnwe that the system traverses during a cyclic excursion. 

With the inclusion of the geometric phase into the general context of quantum 
mechanics, our understanding has been changed in a dramatic way. We now wish to 
view quantum theory as a purely geometric theory. After Berry’s discovery [ 11 of a 
new phase factor accompanying adiabatic evolution in quantal adiabatic theorem, 
Simon [2] interpreted this mysterious phase as a result of holonomy in a line bundle 
over parameter space on which the system’s Hamiltonian depends. The next generaliz- 
ation was for non-adiabatic evolutions of the quantum system, which was done by 
Aharonov and Anandan [3]. They studied the case of the phase acquired by a system’s 
wavefunction upon cyclic evolution in the projective Hilbert space. Further theoretical 
studies of this geometric phase were taken up by Samuel and Bhandari [4] in a more 
general context. The Berry phase made its appearance (to name a few) in molecular 
dynamics in the Born-Oppenheimer approximation [5], the quantum Hall effect [6], 
the case of a Hamiltonian description of quantum field theory that develops anomalies 
[7] and, recently, in the case of a relativistic Dirac Hamiltonian with Thomas precession 
and spin-orbit interactions [8]. 

A less well known geometric quantity is the ‘distance’ between two quantum states. 
Provost and Valle [9] were the first to realize the necessity of introducing the geometric 
structures on the Hilbert space of quantum states. Their idea, in turn, came from 
nuclear physics [lo], where the Riemannian stmcture has been introduced to describe 
the collective behaviours of the nucleons. They have shown how the Hermitian product 
on the projective Hilbert space induces a meaningful metric tensor on any manifold 
of quantum states. The physical significance of the metric structure is that they are 
related to the dispersion of the quantum operators acting on the Hilbert space that 

work of Anandan and Aharonov 1111 and independently by Montgomery [12]. In the 
case of the time evolufion of a quantum system, the distance between quantum states 
along a given curve C in the projective Hilbert space 9 is the time integral of the 
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uncertainty of energy and is geometric in the sense that this distance function is 
independent of the particular Hamiltonian used to evolve a quantum system along a 
given curve in 9. It is also independent of the phases of two infinitesimally nearby 
states and, therefore, depends only on the points in 9’ to which they project. Because 
of this property, even if we change the Hamiltonian by some amount, it will give only 
a different phase factor in the state vector and the distance function will be unaltered. 
We have shown 1131 that this fact is, in turn, a consequence of invariance of the 
(infinitesimal) 2-point Bargmann invariant [14] under U(1) action. On our line of 
query, we asked whether the geometric distance function is related to some other 
physical quantity during the evolution. We found that time average of the acceleration 
of a quantum particle is related to the distance function during the period of the 
evolution [lS]. Since acceleration is related to the distance function in some way, the 
external force to which the particle is subjected is decided by the quantum metric 
tensor. It is a very important result in the sense that, three hundred years after Newton, 
we now understand that the acceleration of a quantum system is a geometric quantity 
related to the evolution of the system. 

Another geometric quantity of interest that we have recently recognized is referred 
to as the ‘length of the curve’ alo:g which the quantum system is traversed [ 161. It is 
the property of the whole curve C in 9. When the system obeys the Schrodinger time 
evolution equation then the length of the curve is a t-invariant quantity. So the length 
of the curve is ‘as geometric as’ the geometric phase. For instance [ 161 we have found 
that in the case of a spin-f particle undergoing precession in a homogeneous magnetic 
field, the total length of the curve in one period is just equal to the square root of TI 

times the total solid angle subtended by the orbit of motion in a sphere of unit radius. 
We emphasize here that the length of the curve during a cyclic evolution could be 
measured in similar experimental set-ups that were used to reveal the existence of the 

the system in 9. With this recognization, it is clear that the projective Hilbert space 
is enriched with geometric objects like geometric phase, distance and length of the 
curve. Our motive in this letter is three-fold; (i) to show that the geometric phase and 
the geometric distance function are intimately related through the length of the curve 
(not necessarily in the case of time evolution but for any parametric evolution), (ii) 
to give a new interpretation to the non-adiabatic Berry phase for cyclic evolution and 
possibly for the nowtiermitian generator of the evolution and (iii) to provide an 
alternative, tractable algorithm for calculating the geometric phase using geometric 
concepts like distance and length in quantum evolution. 

For completeness we define here the geometric phase, distance and length of the 
curve. Consider {+(A))  be a set of normalized vectors belonging to a Hilbert space X 
of dimension N +  1. Then we can define a projective Hilbert space of dimension one 
less, i.e. N. It consists of a set of rays of the Hilbert space X, where the rays are defined 
as the equivalence classes of states differing only in phase. The equivalence relation 
is l$)-l$’) if I$’)=cl$) where O #  c e C *  and C*=C-{0) is a multiplicative group of 
non-zero complex numbers. The projective Hilbert space is 9 = @”(Cl = 
{a-{O)}/C*,  9,(C) is the quantum state space. All vectors in X are projected on to 
9,(C) and the physical states are elements of 9 and represented as points in 9. There 
is also a structure order in 9, namely two state vectors I$,) and I&) define a ‘line’ in 
9, and a third state I+>) may or may not be in this line. In latter case this shows the 
non-transitivity and this property is responsible for geometric phase for a cyclic 
evolution of states. 
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First we define the geometric phase, following the prescription of Anandan [17]. 
Let 2 be the natural line bundle over P with each fibre being the ray of vectors in 
the point to which it projects undzr the projection map II: S+ 9. Let I$(A)) be a curve 
in S which projects to a curve C in 2". Then d/dAl$(A)) is the tangent vector to the 
curve I$(h)) and ($(d/dAl$) describes the parallel transport of the state I$) with respect 
to the connection defined on it. It was shown that if C : [0, A] + P is a closed curve, 
then I$(A))=e'"l$(O)) where 4 is the total phase and in general complex. If I$(h)) 
obeys the parameter evolution equation 

(1) 
d 

i;l$(A))=A(A)I$(A)) 

thenchoose asectionofthecurve I J )  as lt$(A))=exp(-if(A))l$(A)) with($lq)=l and 
f ( A )  is any smooth-complex function satisfyingf(A) -f(O) = @, Then I$(A)) is a single 
valued state, i.e. /+(A)) = l$(O)). The single valued states are important because they 
only depend on the image of the evolution in P. Therefore these states are used to 
define the geometric phase. If @ is the total phase, then Anandan has shown that 

@=@-IA 0 ($(A)IA(A)l$(A)) dh 

and 

Here i($(A)ldlj(A)) is the 'connection form' analogous to the vector potential A in 
electromapetic field that represents a connection form over spacetime. The normaliz- 
ation of I$) ensures that it is real. Thus @ is the geometric phase for an arbitrary cyclic 
transformation. It is a part of the total phase 4 acquired by the state vector during 
the cyclic evolution which is geometric in nature and is independent of the generator 
used to cause the motion. That is to say the geometric phase is independent of the 
generator normalization. Because by changing the generator of the parametric evolution 
by some fixed amount, we will have a state vector whose overall phase is different but 
the extra phase will be shifted to  the dynamical part in such a way that it will not 
affect the single-valued state 1;) and hence the geoyetric phase. It only depends on 
the motion of the system given by the closed curve C in the set of rays in P. 

Now we briefly discuss the second geometric object in P. The distance function 
between two infinitesimal close quantum states is a geometric quantity for all quantum 
evolution. To see this let us consider two non-orthogonal quantum states I$,), and 
their respective projections II(l$,)), I I ( l$Lz ) )  onto the projective Hilbert space 9. Then 
one can define the 'Bargmann angie' i i S j  between two rays as 

w i t h O s R s 1 .  
The Bargmann angle describes the interference between two states. Anandan and 

Aharonov [ 113 have used similar relation and described the transition probability 
between two states in a geometric way. They concluded that the probability oftransition 
1($,1$2)12 between two states satisfy (3) (with 11$1112, 11$2112= 1). where fJ is half the 
distance along any geodesic joining II(l$,}) and II(l$J). If we allow II(l$,)) and II(l@J) 
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to be separated by an infinitesimal distance then we have the Fubini-Study metric, 
given by 

ds2 = 4 0  - KJIiI &)I2). (4) 
This is obtained by using (3) and letting 0 = ds/2. Thus the inner product in Be gives 
a metric in 9. For a fibre bundle description of these concepts see [II ,  191. Another 
way of obtaining the Fubini-Study metric on 9 is by taking the inner product of the 
horizontal component of the tangent vector in Be and multiplying it by 4 dA2. That is, 
we can decompose the tangent vector into unique horizontal and vertical vectors as 
follows: 

where 

and 

Taking into account the evolution equation (1) we can show that 

where 

is the tangent vector to the curve C? in 9 and AA is a non-negative number that satis- 
fies [20] 

Hence 

ds2= 4AA2(A) dA2 s = 2 1 AA(A) dA (7) 
where s is the distance along curve C? as measured by the Fubini-Study metric. This 
is a geometric quantity in the sense that there would be an infinite number of A(A)’s 
generating a given motion in 9 with same AA. Thus the Fubini-Study metric is fixed 
by the non-negative number AA(A), implying thereby that the geometry of the state 
space is fixed by AA(A); consequently A(A) alone cannot change the geometry of the 
projective Hilbert space 9. 

Another important geometric quantity is the ‘length of the curve’ along which the 
quantum system is transported. it is possibie to define this for arbitrary evoiutions in 
the same vein as the geometric distance function. On a proper Riemannian manifold 
the presence of a metric allows the definition of the length I(C) of a differentiable 
curve in 9, which is traced out by the state vector IJ(A)). Below, we define it. 
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Let # be a curve C : [O, A] + Z. Then choose a section of the curve $(A)  which is 
differentiable along C such that the length of the curve $(A)  along which the system 
evolves from point &o) to a point &(A) (or from a parameter value A = O  to A = A)  
is a number defined as 

where ld$(A)/dA) is the velocity vector in the projective Hilbert space P of the curve 
& A )  at point-A along the path of evolution of the state vector. It also tangent vector 
to the curve $(A). 

We would like to spell out some of the general properties of the length of the curve. 
First of all the integral (8) exist in the interval CO, 11, since the integrand is continuous. 
The length of a broken C curve is defined as the (finite) sum of the length of its C 
p-."-.,". Jill "U.,*., "*""".." I I " L . L  Y "J '. "'"..6' "1 y"I'....*'CL I. L" II I 7 L I . l  p .  I. 

#(A') have the same length. Therefore the number I (C)  is independent of the para- 
metrization of its image set, i.e. for a smooth transformation from parameter A to A' 
with dA/dA'>O the length of the curve remains unaltered. Hence the length is a 
property of the geometrical curve, defined by the equivalence class of parametrized 
paths and is A-invariant. 

From these considerations we can define an infinitesimal length of the curve during 
an infinitesimal change in the parameter (for a n  arbitrary parametric evolution of the 
state) as 

-LCsG A l l  ,-..-raL. AnAl.mA frnm P I\., nf nornmdnr I tn ) 1 ' d + h  .I,. )1'+). = 

If the parameter A is such that the quantity ((d$(A)/dA)I(d$(A)/dA))"' is constant 
along C, the curve is said to be parametrized proportionally to the arc length. The 
quantity dl/dA = up is called the magnitude of the rate of change of (with respect to 
A )  arc length of the curve C. Therefore for a proportionally parametrized curve the 
quantity up is constant during the evolution. 

We now proceed to show that the geometric phase and distance are related via 
length of the curve for an arbitrary parametric evolution of the quantum system. In 
fact, we will prove that the geometric phase for an arbitrary cyclic evolution of a 
quantum state is half of the integral of the contracted length of the curve C in P along 
which the system moves. This is easily done by evaluating the quantity ds*, the square 
of the infinitesimal Fubini-Study distance. By definition AA2(A) is 

Making use of the modified state vector 14) we have 

Hence 
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Therefore 

This leads to the expression 

d12-ds2 = (2i( & A )  1$1 &A)))2 dA2. 

The expression (13) is the relation between the geometric phase and the distance for 
any parametric evolution via length of the curve. If the parameter happens to be the 
time and A the Hamiltonian, the generator of the time translation then (13) gives the 
result obtained in the [16]. In proving this, we have not assumed that A should he 
Hermitian and linear, so (13) may hold good for non-Hermitian generators also. On 
writing (13) in a particular form we can see that it is nothing but (half) the integral 
of the contracted length of the curve. Since 

p = f jOA = f IoA dL 

and dL=Jl - (u$/u$)  d l  is called an infinitesimal contracted length of the curve 
because the speed of transportation ds/dA = up is always less than that of the rate of 
change of arc length of the curve; we call Jl-u2,/u2, it the contraction factor (cF). 
Equation (14) is an important result, since it reflects in a straightforward way certain 
features of the quantum state space. It also gives a novel way of looking into the 
geometric phase. Since ‘length’ and ‘distance’ dictate the topology of the curve C, and, 
the geometric phase depends on  them, it is also topological in nature. We have claimed 
in [16] that our expression is a more geometric one than other expressions previously 
known for time evolution of the quantum system. But here we have generalized it to 
an arbitrary parametric evolution of the quantum system, therefore the earlier result 
may be considered as a special case of this evolution. 

An important observation made in this context is that if the evolution happens to 
be such that the contraction factor goes to zero, then obviously the geometric phase 
is zero. However, the length of the curve and the geometric distance function are 
non-zero. This is possible during the evolution if the quantum system passes through 
the shortest geodesic, then the length of the curve is minimized and is equal to the 
distance and consequently the contraction factor vanishes. Thus one recovers the result 
that for shortest geodesic joining initial and final points, the geometric phase vanishes 
[4]. If the contraction factor approaches unity, the geometric phase acquired by the 
system is just equal to half of the total length of the curve during the cyclic excursion. 
Also, it provides an important clue to the question: what will be the maximum geometric 
phase acquired during an arbitrary cyclic evolution? The answer is that it is half of 
the total length of the curve I (  C), in 9 (since the contraction factor vanes from zero 
to unity). One more thing to be noted is that if the contraction factor is constant, then 
the geometric phase is directly proportional to the total length of the curve during the 
cyclic evolution. 

In addition to this, (14) provides a novel way of understanding the origin of the 
geomeiric phase. Ai each point, A the ‘iengih‘ is greater ihan ihe ‘disiance’; due io this 
fundamental inequality between two geometric objects, another geometric object 
develops and it is recognized as the geometric phase. Thus, during the cyclic quantum 
evolution, we may regard the excess length of the curve over the distance to go on 
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accumulating, so that its integrated, squared difference finally appears as the geometric 
phase. We emphasize here that for this interpretation to be valid, the generator of the 
parametric evolution, A need not be Hermitian or linear and it may or may not depend 
on the parameter A. The simple expression (14) gives every answer to the question 
that we want to ask about the geometric phase. 

Furthermore, our result provides a simple way of calculating the geometric phase 
for arbitrary cyclic, parametric evolution of quantum systems. We illustrate this here 
by studying one example. It differs from other known methods of calculating the 
geometric phase, because we do it via the geometric diptance function and length of 
the curve and thereby presents a tractable algorithm for calculating the geometric phase. 

The example comprises of a quantum system where the state vector is represented 
by 

3 

" = - J  
1$(A))=(2J+1)-1/2 C e-'"""ln) (15) 

for n = -J, - J +  I , .  . . , J- 1, J, where the ( n y s  are fixed orthonormal states and a is 
a positive, real constant. The state has (21+1) discrete quantum levels, where I is a 
positive integer or half-odd integer. For simplicity of the calculation we have assumed 
I$) is normalized, but it does not affect the method of calculation in any way. The 
generator of the parameter satisfies the equation 

Aln)=naln).  (16) 
Because of (16), we can see that I$(A)) obeys the equation ($(A)ld/dAI$(A))=O, i.e. 
it undergoes parallel transport with respect to the natural connection defined on $3'. 
The holonomy associated with this co?nection determines the change of the phase of 
the state vector along-a closed curve C in P. This ]$(A))  is also called the horizontal 
lift of a closed curve C in 9 to which they project. In the interval [0, A] if it undergoes 
a cyclic evolution, then 

IJI(A))=eiml$(o))=e'BI$(0)) (17) 
where p is the holonomy transformation associated with the curve e and is the 
geometric phase, which is again the same as the total phase acquired during a cyclic 
evolution. The system passes through a sequence of orthonormal state vectors; assuming 
the J's are half-odd integers we can see that the state changes sign after a period of 
A =2?r/a. Thus the total phase can be taken as r. 

Now we can calculate the geometric distance function ds. It follows trivially from 
the definition and is given by 

a 
ds  =2-(J2+J)'" dA. (18) 

Hence, during the cyclic evolution, the total distance travelled by the state vector I$) 
and measured by the Fubini-Study metric is given by 

J5 

m 
s = 4-(J2+ J)I /Z .  (19) 

To calculate the geometricJength o[ the curve, we have to choose a single valued 

J5 

state vector 1$(A)) satisfying [$(A))= IIL(0)). This is given by 
J 

"=-l 
In). (20) I$@)) = (2J+1)-1/2 1 e-i("+1/2).* 
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We calculate the infinitesimal (squared) length of the curve, 

d12 = 4[4(J2+ J)+$]a2 dh2. 

The rate of change of the arc length of the curve is given by 

up =2[4(J2+ J)+$]'"a 

and the total length of the curve duirng one cycle is given by 

(22) ,,., 1 -r1, r2 I r\ I h1/2 
' ( C ,  =*qs\, T , , T Z ,  . 

Next, using (14), we calculate the geometric phase, 

(23) 

which is exactly what was expected. Hence the geometric phase p, associated with the 
cyclic evolution of the parametric state, is n over one period A=2n/a .  

This example provides a geometric way of realizing the calculation of the phase 
during a cyclic excursion. One can also see the geometric nature of the three objects 
in 9, i.e. the phase, distance and length all as functions of a, J and A. An im ortant 
quantity of interest in this context is the contraction factor (CF) i.e. l - (uB/up),  
which is found to be d3/[4J(J+l)+3]. A necessary and sufficient condition for 
acquiring the geometric phase is that CF shouid not vanish during a cyciic evoiurion 
of the quantum system. Here in fact it is non-zero, unless J is very large, i.e. J+m. 
Also we cannot have CF equal to unity (because the J's are half-odd integers) and 
hence the geometric phase cannot be made equal to the length of the curve during a 
cyclic evolution. This confirms our assertion that the geometric phase is equal to (half) 
the integral of the contracted length of the curve during cyclic evolution of the quantum 
SjjsitXi. 

I am grateful to Dr D C Sahni for his encouragement and keen interest in this work. 
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